
Hashing:
Substring Search

Michael Levin
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX


Outline

1 Find Substring in Text

2 Rabin-Karp’s Algorithm

3 Recurrence Equation for Substring Hashes

4 Improving Running Time



Searching for Substring
Given a text T (website, book, Amazon
product page) and a string P (word, phrase,
sentence), find all occurrences of P in T.

Examples

Specific term in Wikipedia article
Gene in a genome
Detect files infected by virus — code
patterns
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Substring Notation
Definition
Denote by S[i..j] the substring of string S
starting in position i and ending in position j.

Examples
If S =“hashing”, then
S[0..3] =“hash”,
S[4..6] =“ing”,
S[2..5] =“shin”.



Find Substring in String

Input: Strings T and P.
Output: All such positions i in T,

0 ≤ i ≤ |T| − |P| that
T[i..i + |P| − 1] = P.



Naive Algorithm

For each position i from 0 to |T| − |P|, check
whether T[i..i + |P| − 1] = P or not.

If yes, append i to the result.



AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True
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FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions
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Running Time
Lemma
Running time of FindPatternNaive(T,P)
is O(|T||P|).

Proof

Each AreEqual call is O(|P|)
|T| − |P|+ 1 calls of AreEqual total to
O((|T| − |P| + 1)|P|) = O(|T||P|)
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Bad Example
T =“aaa. . . . . . aa” (very long)
P =“aaa. . . ab” (much shorter than T)

For each position i in T from 0 to |T| − |P|,
the call to AreEqual has to make all |P|
comparisons, because the difference is always
in the last character.

Thus, in this case the naive algorithm runs in
time Θ(|T||P|).
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Rabin-Karp’s Algorithm

Compare P with all substrings S of T of
length |P|

Idea: use hashing to make the
comparisons faster
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Comparing Hashes
If h(P) ̸= h(S), then definitely P ̸= S

If h(P) = h(S), call AreEqual(P, S) to
check whether P = S or not
Use polynomial hash family Pp with
prime p
If P ̸= S, the probability
Pr[h(P) = h(S)] of collision is at most
|P|
p for polynomial hashing — can be

made small by choosing very large
prime p
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RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions
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False Alarms

“False alarm” is the event when P is
compared with a substring S of T, but
P ̸= S.

The probability of “false alarm” is at most |P|p
On average, the total number of “false
alarms” will be (|T|−|P|+1)|P|

p , which can be
made small by selecting p≫ |T||P|.
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h(P) is computed in O(|P|)

h(T[i..i + |P| − 1]) is computed in
O(|P|), |T| − |P| + 1 times
O(|P|) + O((|T| − |P| + 1)|P|) =
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AreEqual Running Time

AreEqual is computed in O(|P|)

AreEqual is called only when
h(P) = h(T[i..i + |P| − 1]), meaning
that either an occurrence of P is found
or a “false alarm” happened
By selecting p≫ |T||P| we make the
number of “false alarms” negligible
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Total Running Time

If P is found q times in T, then total
time spent in AreEqual is on average
O((q + (|T|−|P|+1)|P|

p )|P|) = O(q|P|) for
p≫ |T||P|

Total running time is on average
O(|T||P|) + O(q|P|) = O(|T||P|) as
q ≤ |T|
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Analysis
O(|T||P|) is the same as running time
of the Naive algorithm, but it can be
improved!

The second summand O(q|P|) is
unavoidable as we need to check each
of the q occurrences of |P| in |T|
The first summand O(|T||P|) is so big
because we compute hash of each
substring of |T| separately
This can be optimized — see next video
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Idea
Polynomial hash:

h(S) =
|S|−1∑
i=0

S[i]xi mod p

Idea: polynomial hashes of two consecutive
substrings of T are very similar

For each i, denote h(T[i..i + |P| − 1]) by H[i]
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Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p
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Using Recurrence Equation
H[i] = xH[i+1]+(T[i]−T[i+ |P|]x|P|) mod p

x|P| can be computed once and saved
Using this recurrence equation, H[i] can
be computed in O(1) given H[i + 1] and
x|P|
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Use Precomputation

Use the recurrence equation to
precompute all hashes of substrings of
|T| of length equal to |P|
Then proceed same way as the original
Rabin-Karp algorithm implementation



PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)= O(|T| + |P|)
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Precomputing H

PolyHash is called once — O(|P|)
x|P| is computed in O(|P|)
All values of H are computed in
O(|T| − |P|)
Total precomputation time O(|T| + |P|)



RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions
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Improved Running Time
h(P) is computed in O(|P|)

PrecomputeHashes in O(|T| + |P|)
Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T
Total running time on average
O(|T| + (q + 1)|P|)
Usually q is small, so this is much less
than O(|T||P|)
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Conclusion
Hash tables are useful for storing Sets
and Maps

Possible to search and modify hash
tables in O(1) on average!
Must use good hash families and
randomization
Hashes are also useful while working
with strings and texts
There are many more applications,
including blockchain — see next video!
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