
Hashing:
Substring Search

Michael Levin
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX

Outline

1 Find Substring in Text

2 Rabin-Karp’s Algorithm

3 Recurrence Equation for Substring Hashes

4 Improving Running Time

Searching for Substring
Given a text T (website, book, Amazon
product page) and a string P (word, phrase,
sentence), find all occurrences of P in T.

Examples

Specific term in Wikipedia article
Gene in a genome
Detect files infected by virus — code
patterns

Searching for Substring
Given a text T (website, book, Amazon
product page) and a string P (word, phrase,
sentence), find all occurrences of P in T.

Examples

Specific term in Wikipedia article

Gene in a genome
Detect files infected by virus — code
patterns

Searching for Substring
Given a text T (website, book, Amazon
product page) and a string P (word, phrase,
sentence), find all occurrences of P in T.

Examples

Specific term in Wikipedia article
Gene in a genome

Detect files infected by virus — code
patterns

Searching for Substring
Given a text T (website, book, Amazon
product page) and a string P (word, phrase,
sentence), find all occurrences of P in T.

Examples

Specific term in Wikipedia article
Gene in a genome
Detect files infected by virus — code
patterns

Substring Notation
Definition
Denote by S[i..j] the substring of string S
starting in position i and ending in position j.

Examples
If S =“hashing”, then
S[0..3] =“hash”,
S[4..6] =“ing”,
S[2..5] =“shin”.

Find Substring in String

Input: Strings T and P.
Output: All such positions i in T,

0 ≤ i ≤ |T| − |P| that
T[i..i + |P| − 1] = P.

Naive Algorithm

For each position i from 0 to |T| − |P|, check
whether T[i..i + |P| − 1] = P or not.

If yes, append i to the result.

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

AreEqual(S1, S2)

if |S1| ̸= |S2|:
return False

for i from 0 to |S1| − 1:
if S1[i] ̸= S2[i]:

return False
return True

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

FindSubstringNaive(T,P)
positions ← empty list
for i from 0 to |T| − |P|:

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

Running Time
Lemma
Running time of FindPatternNaive(T,P)
is O(|T||P|).

Proof

Each AreEqual call is O(|P|)
|T| − |P|+ 1 calls of AreEqual total to
O((|T| − |P| + 1)|P|) = O(|T||P|)

Running Time
Lemma
Running time of FindPatternNaive(T,P)
is O(|T||P|).

Proof
Each AreEqual call is O(|P|)

|T| − |P|+ 1 calls of AreEqual total to
O((|T| − |P| + 1)|P|) = O(|T||P|)

Running Time
Lemma
Running time of FindPatternNaive(T,P)
is O(|T||P|).

Proof
Each AreEqual call is O(|P|)
|T| − |P|+ 1 calls of AreEqual total to
O((|T| − |P| + 1)|P|) = O(|T||P|)

Bad Example
T =“aaa. aa” (very long)
P =“aaa. . . ab” (much shorter than T)

For each position i in T from 0 to |T| − |P|,
the call to AreEqual has to make all |P|
comparisons, because the difference is always
in the last character.

Thus, in this case the naive algorithm runs in
time Θ(|T||P|).

Bad Example
T =“aaa. aa” (very long)
P =“aaa. . . ab” (much shorter than T)

For each position i in T from 0 to |T| − |P|,
the call to AreEqual has to make all |P|
comparisons, because the difference is always
in the last character.

Thus, in this case the naive algorithm runs in
time Θ(|T||P|).

Bad Example
T =“aaa. aa” (very long)
P =“aaa. . . ab” (much shorter than T)

For each position i in T from 0 to |T| − |P|,
the call to AreEqual has to make all |P|
comparisons, because the difference is always
in the last character.

Thus, in this case the naive algorithm runs in
time Θ(|T||P|).

Outline

1 Find Substring in Text

2 Rabin-Karp’s Algorithm

3 Recurrence Equation for Substring Hashes

4 Improving Running Time

Rabin-Karp’s Algorithm

Compare P with all substrings S of T of
length |P|

Idea: use hashing to make the
comparisons faster

Rabin-Karp’s Algorithm

Compare P with all substrings S of T of
length |P|
Idea: use hashing to make the
comparisons faster

Comparing Hashes
If h(P) ̸= h(S), then definitely P ̸= S

If h(P) = h(S), call AreEqual(P, S) to
check whether P = S or not
Use polynomial hash family Pp with
prime p
If P ̸= S, the probability
Pr[h(P) = h(S)] of collision is at most
|P|
p for polynomial hashing — can be

made small by choosing very large
prime p

Comparing Hashes
If h(P) ̸= h(S), then definitely P ̸= S
If h(P) = h(S), call AreEqual(P, S) to
check whether P = S or not

Use polynomial hash family Pp with
prime p
If P ̸= S, the probability
Pr[h(P) = h(S)] of collision is at most
|P|
p for polynomial hashing — can be

made small by choosing very large
prime p

Comparing Hashes
If h(P) ̸= h(S), then definitely P ̸= S
If h(P) = h(S), call AreEqual(P, S) to
check whether P = S or not
Use polynomial hash family Pp with
prime p

If P ̸= S, the probability
Pr[h(P) = h(S)] of collision is at most
|P|
p for polynomial hashing — can be

made small by choosing very large
prime p

Comparing Hashes
If h(P) ̸= h(S), then definitely P ̸= S
If h(P) = h(S), call AreEqual(P, S) to
check whether P = S or not
Use polynomial hash family Pp with
prime p
If P ̸= S, the probability
Pr[h(P) = h(S)] of collision is at most
|P|
p for polynomial hashing — can be

made small by choosing very large
prime p

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
for i from 0 to |T| − |P|:

tHash ← PolyHash(T[i..i+ |P|−1], p, x)
if pHash ̸= tHash:

continue
if AreEqual(T[i..i + |P| − 1],P):

positions.Append(i)
return positions

False Alarms

“False alarm” is the event when P is
compared with a substring S of T, but
P ̸= S.

The probability of “false alarm” is at most |P|p
On average, the total number of “false
alarms” will be (|T|−|P|+1)|P|

p , which can be
made small by selecting p≫ |T||P|.

False Alarms

“False alarm” is the event when P is
compared with a substring S of T, but
P ̸= S.

The probability of “false alarm” is at most |P|p

On average, the total number of “false
alarms” will be (|T|−|P|+1)|P|

p , which can be
made small by selecting p≫ |T||P|.

False Alarms

“False alarm” is the event when P is
compared with a substring S of T, but
P ̸= S.

The probability of “false alarm” is at most |P|p
On average, the total number of “false
alarms” will be (|T|−|P|+1)|P|

p , which can be
made small by selecting p≫ |T||P|.

Running Time without AreEqual

h(P) is computed in O(|P|)

h(T[i..i + |P| − 1]) is computed in
O(|P|), |T| − |P| + 1 times
O(|P|) + O((|T| − |P| + 1)|P|) =
O(|T||P|)

Running Time without AreEqual

h(P) is computed in O(|P|)
h(T[i..i + |P| − 1]) is computed in
O(|P|), |T| − |P| + 1 times

O(|P|) + O((|T| − |P| + 1)|P|) =
O(|T||P|)

Running Time without AreEqual

h(P) is computed in O(|P|)
h(T[i..i + |P| − 1]) is computed in
O(|P|), |T| − |P| + 1 times
O(|P|) + O((|T| − |P| + 1)|P|) =
O(|T||P|)

AreEqual Running Time

AreEqual is computed in O(|P|)

AreEqual is called only when
h(P) = h(T[i..i + |P| − 1]), meaning
that either an occurrence of P is found
or a “false alarm” happened
By selecting p≫ |T||P| we make the
number of “false alarms” negligible

AreEqual Running Time

AreEqual is computed in O(|P|)
AreEqual is called only when
h(P) = h(T[i..i + |P| − 1]), meaning
that either an occurrence of P is found
or a “false alarm” happened

By selecting p≫ |T||P| we make the
number of “false alarms” negligible

AreEqual Running Time

AreEqual is computed in O(|P|)
AreEqual is called only when
h(P) = h(T[i..i + |P| − 1]), meaning
that either an occurrence of P is found
or a “false alarm” happened
By selecting p≫ |T||P| we make the
number of “false alarms” negligible

Total Running Time

If P is found q times in T, then total
time spent in AreEqual is on average
O((q + (|T|−|P|+1)|P|

p)|P|) = O(q|P|) for
p≫ |T||P|

Total running time is on average
O(|T||P|) + O(q|P|) = O(|T||P|) as
q ≤ |T|

Total Running Time

If P is found q times in T, then total
time spent in AreEqual is on average
O((q + (|T|−|P|+1)|P|

p)|P|) = O(q|P|) for
p≫ |T||P|
Total running time is on average
O(|T||P|) + O(q|P|) = O(|T||P|) as
q ≤ |T|

Analysis
O(|T||P|) is the same as running time
of the Naive algorithm, but it can be
improved!

The second summand O(q|P|) is
unavoidable as we need to check each
of the q occurrences of |P| in |T|
The first summand O(|T||P|) is so big
because we compute hash of each
substring of |T| separately
This can be optimized — see next video

Analysis
O(|T||P|) is the same as running time
of the Naive algorithm, but it can be
improved!
The second summand O(q|P|) is
unavoidable as we need to check each
of the q occurrences of |P| in |T|

The first summand O(|T||P|) is so big
because we compute hash of each
substring of |T| separately
This can be optimized — see next video

Analysis
O(|T||P|) is the same as running time
of the Naive algorithm, but it can be
improved!
The second summand O(q|P|) is
unavoidable as we need to check each
of the q occurrences of |P| in |T|
The first summand O(|T||P|) is so big
because we compute hash of each
substring of |T| separately

This can be optimized — see next video

Analysis
O(|T||P|) is the same as running time
of the Naive algorithm, but it can be
improved!
The second summand O(q|P|) is
unavoidable as we need to check each
of the q occurrences of |P| in |T|
The first summand O(|T||P|) is so big
because we compute hash of each
substring of |T| separately
This can be optimized — see next video

Outline

1 Find Substring in Text

2 Rabin-Karp’s Algorithm

3 Recurrence Equation for Substring Hashes

4 Improving Running Time

Idea
Polynomial hash:

h(S) =
|S|−1∑
i=0

S[i]xi mod p

Idea: polynomial hashes of two consecutive
substrings of T are very similar

For each i, denote h(T[i..i + |P| − 1]) by H[i]

Idea
Polynomial hash:

h(S) =
|S|−1∑
i=0

S[i]xi mod p

Idea: polynomial hashes of two consecutive
substrings of T are very similar

For each i, denote h(T[i..i + |P| − 1]) by H[i]

Idea
Polynomial hash:

h(S) =
|S|−1∑
i=0

S[i]xi mod p

Idea: polynomial hashes of two consecutive
substrings of T are very similar

For each i, denote h(T[i..i + |P| − 1]) by H[i]

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
1 x x2h("ach") =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 1 x x2

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

H[2] = h("ach") = 0 + 2x + 7x2

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

H[2] = h("ach") = 0 + 2x + 7x2

H[1] = h("eac") = 4 + 0x + 2x2 =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

H[2] = h("ach") = 0 + 2x + 7x2

H[1] = h("eac") = 4 + 0x + 2x2 =

= 4 + x(0 + 2x) =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

H[2] = h("ach") = 0 + 2x + 7x2

H[1] = h("eac") = 4 + 0x + 2x2 =

= 4 + x(0 + 2x) =
= 4 + x(0 + 2x + 7x2)− 7x3 =

Consecutive substrings
b e a c hT =

encode(T) = 1 4 0 2 7 |P| = 3
h("ach") = 0 2x 7x2+ +

h("eac") = 4 0 2x2+ +
·x ·x

H[2] = h("ach") = 0 + 2x + 7x2

H[1] = h("eac") = 4 + 0x + 2x2 =

= 4 + x(0 + 2x) =
= 4 + x(0 + 2x + 7x2)− 7x3 =

= xH[2] + 4− 7x3

Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p

Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p

Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p

Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p

Recurrence Equation for H[i]
H[i + 1] =

i+|P|∑
j=i+1

T[j]xj−i−1 mod p

H[i] =
i+|P|−1∑

j=i
T[j]xj−i mod p =

=
i+|P|∑
j=i+1

T[j]xj−i + T[i]− T[i + |P|]x|P| mod p =

= x
i+|P|∑
j=i+1

T[j]xj−i−1 + (T[i]− T[i + |P|]x|P|) mod p

H[i] = xH[i + 1] + (T[i]− T[i + |P|]x|P|) mod p

Using Recurrence Equation
H[i] = xH[i+1]+(T[i]−T[i+ |P|]x|P|) mod p

x|P| can be computed once and saved
Using this recurrence equation, H[i] can
be computed in O(1) given H[i + 1] and
x|P|
See next video to learn how this
improves the running time of
Rabin-Karp

Using Recurrence Equation
H[i] = xH[i+1]+(T[i]−T[i+ |P|]x|P|) mod p

x|P| can be computed once and saved

Using this recurrence equation, H[i] can
be computed in O(1) given H[i + 1] and
x|P|
See next video to learn how this
improves the running time of
Rabin-Karp

Using Recurrence Equation
H[i] = xH[i+1]+(T[i]−T[i+ |P|]x|P|) mod p

x|P| can be computed once and saved
Using this recurrence equation, H[i] can
be computed in O(1) given H[i + 1] and
x|P|

See next video to learn how this
improves the running time of
Rabin-Karp

Using Recurrence Equation
H[i] = xH[i+1]+(T[i]−T[i+ |P|]x|P|) mod p

x|P| can be computed once and saved
Using this recurrence equation, H[i] can
be computed in O(1) given H[i + 1] and
x|P|
See next video to learn how this
improves the running time of
Rabin-Karp

Outline

1 Find Substring in Text

2 Rabin-Karp’s Algorithm

3 Recurrence Equation for Substring Hashes

4 Improving Running Time

Use Precomputation

Use the recurrence equation to
precompute all hashes of substrings of
|T| of length equal to |P|
Then proceed same way as the original
Rabin-Karp algorithm implementation

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|

+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|

+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|

+|P|+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|

+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|

+|T| − |P|)= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)

= O(|T| + |P|)

PrecomputeHashes(T, |P|, p, x)
H← array of length |T| − |P|+ 1
S← T[|T| − |P|..|T| − 1]
H[|T| − |P|]← PolyHash(S, p, x)
y← 1
for i from 1 to |P|:

y← (y · x) mod p
for i from |T| − |P| − 1 down to 0:

H[i]← (xH[i + 1] + T[i]− yT[i + |P|]) mod p
return H

O(|P|+|P|+|T| − |P|)= O(|T| + |P|)

Precomputing H

PolyHash is called once — O(|P|)
x|P| is computed in O(|P|)
All values of H are computed in
O(|T| − |P|)
Total precomputation time O(|T| + |P|)

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ≠ H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

RabinKarp(T,P)
p← big prime, x← random(1, p− 1)
positions ← empty list
pHash ← PolyHash(P, p, x)
H← PrecomputeHashes(T, |P|, p, x)
for i from 0 to |T| − |P|:

if pHash ̸= H[i]:
continue

if AreEqual(T[i..i + |P| − 1],P):
positions.Append(i)

return positions

Improved Running Time
h(P) is computed in O(|P|)

PrecomputeHashes in O(|T| + |P|)
Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T
Total running time on average
O(|T| + (q + 1)|P|)
Usually q is small, so this is much less
than O(|T||P|)

Improved Running Time
h(P) is computed in O(|P|)
PrecomputeHashes in O(|T| + |P|)

Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T
Total running time on average
O(|T| + (q + 1)|P|)
Usually q is small, so this is much less
than O(|T||P|)

Improved Running Time
h(P) is computed in O(|P|)
PrecomputeHashes in O(|T| + |P|)
Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T

Total running time on average
O(|T| + (q + 1)|P|)
Usually q is small, so this is much less
than O(|T||P|)

Improved Running Time
h(P) is computed in O(|P|)
PrecomputeHashes in O(|T| + |P|)
Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T
Total running time on average
O(|T| + (q + 1)|P|)

Usually q is small, so this is much less
than O(|T||P|)

Improved Running Time
h(P) is computed in O(|P|)
PrecomputeHashes in O(|T| + |P|)
Total time spent in AreEqual is
O(q|P|) on average (for large enough
prime p), where q is the number of
occurrences of P in T
Total running time on average
O(|T| + (q + 1)|P|)
Usually q is small, so this is much less
than O(|T||P|)

Conclusion
Hash tables are useful for storing Sets
and Maps

Possible to search and modify hash
tables in O(1) on average!
Must use good hash families and
randomization
Hashes are also useful while working
with strings and texts
There are many more applications,
including blockchain — see next video!

Conclusion
Hash tables are useful for storing Sets
and Maps
Possible to search and modify hash
tables in O(1) on average!

Must use good hash families and
randomization
Hashes are also useful while working
with strings and texts
There are many more applications,
including blockchain — see next video!

Conclusion
Hash tables are useful for storing Sets
and Maps
Possible to search and modify hash
tables in O(1) on average!
Must use good hash families and
randomization

Hashes are also useful while working
with strings and texts
There are many more applications,
including blockchain — see next video!

Conclusion
Hash tables are useful for storing Sets
and Maps
Possible to search and modify hash
tables in O(1) on average!
Must use good hash families and
randomization
Hashes are also useful while working
with strings and texts

There are many more applications,
including blockchain — see next video!

Conclusion
Hash tables are useful for storing Sets
and Maps
Possible to search and modify hash
tables in O(1) on average!
Must use good hash families and
randomization
Hashes are also useful while working
with strings and texts
There are many more applications,
including blockchain — see next video!

	Find Substring in Text
	Rabin-Karp's Algorithm
	Recurrence Equation for Substring Hashes
	Improving Running Time

