
Hashing:
Introduction

Michael Levin
Department of Computer Science and Engineering

University of California, San Diego

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Blockchain

Programming Languages

Programming Languages

dict

Programming Languages

dict

HashMap

Programming Languages

Keywords: for, if, while, int, …

File Systems

Digital Signature

Digital Signature

Digital Signature

Digital Signature

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Who’s Calling?

Who’s Calling?

Who’s Calling?

Phone Book

Phone number Name
01707773331 Maria
239-17-17 Sasha
575-75-75 Helen

Phone to Name

We are going to focus on retrieving name by
phone number for now

Local Phone Numbers

Like 123-23-23

Typically up to 7 digits
Sufficient for 107 = 10 000 000 phone
numbers

Local Phone Numbers

Like 123-23-23
Typically up to 7 digits

Sufficient for 107 = 10 000 000 phone
numbers

Local Phone Numbers

Like 123-23-23
Typically up to 7 digits
Sufficient for 107 = 10 000 000 phone
numbers

Convert Phone Number to Integer

Examples
123-23-23 → 1 232 323
049 12 12 → 491 212
5757575 → 5 757 575

Direct Addressing

107 rows



Phone number Name
0000000
…
2391717 Sasha
…
5757575 Helen
…
9999999

Direct Addressing

Store phone book as array of size 107

Names are values of the array
To retrieve name by phone number,
convert phone number to integer first
Use the resulting integer as index in the
array of names

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

GetName(phoneNumber)
index ← ConvertToInt(phoneNumber)
return phoneBookArray[index]

SetName(phoneNumber, name)
index ← ConvertToInt(phoneNumber)
phoneBookArray[index] ← name

Asymptotics

For a phone book with n contacts,
Retrieve name by phone number in O(1)

Set name for a phone number in O(1)
Memory consumption is O(|U|), where
U is the set of all possible phone
numbers

Asymptotics

For a phone book with n contacts,
Retrieve name by phone number in O(1)
Set name for a phone number in O(1)

Memory consumption is O(|U|), where
U is the set of all possible phone
numbers

Asymptotics

For a phone book with n contacts,
Retrieve name by phone number in O(1)
Set name for a phone number in O(1)
Memory consumption is O(|U|), where
U is the set of all possible phone
numbers

Conclusion

Local phone numbers are up to 7 digits
long
Can store them in an array of size 107

This scheme is called direct addressing
It is the simplest form of hashing

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

International Phone Numbers
Like +1-800-700-00-00

Can be up to 15 digits:
+594 700 123 233 455
Using direct addressing requires array of
size 1015, which would take 7PB (7
petabytes) to store one phone book
(1PB = 1024TB, 1TB = 1024GB)
Your phone memory is probably at most
256GB, so you would need 28762
phones to store your phone book :)

International Phone Numbers
Like +1-800-700-00-00
Can be up to 15 digits:
+594 700 123 233 455

Using direct addressing requires array of
size 1015, which would take 7PB (7
petabytes) to store one phone book
(1PB = 1024TB, 1TB = 1024GB)
Your phone memory is probably at most
256GB, so you would need 28762
phones to store your phone book :)

International Phone Numbers
Like +1-800-700-00-00
Can be up to 15 digits:
+594 700 123 233 455
Using direct addressing requires array of
size 1015, which would take 7PB (7
petabytes) to store one phone book
(1PB = 1024TB, 1TB = 1024GB)

Your phone memory is probably at most
256GB, so you would need 28762
phones to store your phone book :)

International Phone Numbers
Like +1-800-700-00-00
Can be up to 15 digits:
+594 700 123 233 455
Using direct addressing requires array of
size 1015, which would take 7PB (7
petabytes) to store one phone book
(1PB = 1024TB, 1TB = 1024GB)
Your phone memory is probably at most
256GB, so you would need 28762
phones to store your phone book :)

Idea
Direct addressing requires too much
memory

Array is huge because it has a cell for
every possible phone number
Let’s store only the known phone
numbers
Put pairs (Phone number, Name) into a
doubly-linked list

Idea
Direct addressing requires too much
memory
Array is huge because it has a cell for
every possible phone number

Let’s store only the known phone
numbers
Put pairs (Phone number, Name) into a
doubly-linked list

Idea
Direct addressing requires too much
memory
Array is huge because it has a cell for
every possible phone number
Let’s store only the known phone
numbers

Put pairs (Phone number, Name) into a
doubly-linked list

Idea
Direct addressing requires too much
memory
Array is huge because it has a cell for
every possible phone number
Let’s store only the known phone
numbers
Put pairs (Phone number, Name) into a
doubly-linked list

Idea

14052391717
Sasha

15025757575
Helen

01707773331
Maria

Operations

To add a contact, just insert new pair
(Phone number, Name) into the list in
O(1)

To retrieve name by phone number,
search through the list...
...in O(n), where n is the total number
of contacts
Too slow

Operations

To add a contact, just insert new pair
(Phone number, Name) into the list in
O(1)
To retrieve name by phone number,
search through the list...

...in O(n), where n is the total number
of contacts
Too slow

Operations

To add a contact, just insert new pair
(Phone number, Name) into the list in
O(1)
To retrieve name by phone number,
search through the list...
...in O(n), where n is the total number
of contacts

Too slow

Operations

To add a contact, just insert new pair
(Phone number, Name) into the list in
O(1)
To retrieve name by phone number,
search through the list...
...in O(n), where n is the total number
of contacts
Too slow

Idea 2

Retrieving a name by phone number is
slow, because we need to look through
the whole list

Let’s put the pairs (Phone number,
Name) in a dynamic array sorted by
phone number!

Idea 2

Retrieving a name by phone number is
slow, because we need to look through
the whole list
Let’s put the pairs (Phone number,
Name) in a dynamic array sorted by
phone number!

Idea 2

01707773331 Maria
14052391717 Sasha
15025757575 Helen

Operations
Retrieve name by phone number using
binary search in O(log n)

To insert a new contact, find
appropriate position in O(log n), then
insert in...
...O(n), because we need to first move
part of the array 1 position to the right
Too slow again

Operations
Retrieve name by phone number using
binary search in O(log n)
To insert a new contact, find
appropriate position in O(log n), then
insert in...

...O(n), because we need to first move
part of the array 1 position to the right
Too slow again

Operations
Retrieve name by phone number using
binary search in O(log n)
To insert a new contact, find
appropriate position in O(log n), then
insert in...
...O(n), because we need to first move
part of the array 1 position to the right

Too slow again

Operations
Retrieve name by phone number using
binary search in O(log n)
To insert a new contact, find
appropriate position in O(log n), then
insert in...
...O(n), because we need to first move
part of the array 1 position to the right
Too slow again

Conclusion

International numbers can be up to 15
digits long
Direct addressing requires 7 petabytes
of memory
Simple list-based and array-based
approaches are too slow
Next videos — solution using hashing

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Encoding Phone Numbers

Encode international phone numbers
with small numbers

E.g. numbers from 0 to 999
Different codes for the phone numbers
in the phone book

Encoding Phone Numbers

Encode international phone numbers
with small numbers
E.g. numbers from 0 to 999

Different codes for the phone numbers
in the phone book

Encoding Phone Numbers

Encode international phone numbers
with small numbers
E.g. numbers from 0 to 999
Different codes for the phone numbers
in the phone book

Hash Function

Definition
For any set of objects S and any integer
m > 0, a function h : S→ {0, 1, . . . ,m− 1}
is called a hash function.

Definition
m is called the cardinality of hash function h.

Hash Function

Definition
For any set of objects S and any integer
m > 0, a function h : S→ {0, 1, . . . ,m− 1}
is called a hash function.

Definition
m is called the cardinality of hash function h.

Desirable Properties
Hash function should be fast to
compute

Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m
Impossible to have all different values if
number of objects |S| is more than m
(by pigeonhole principle)

Desirable Properties
Hash function should be fast to
compute
Different values for different objects

Direct addressing with O(m) memory
Want small cardinality m
Impossible to have all different values if
number of objects |S| is more than m
(by pigeonhole principle)

Desirable Properties
Hash function should be fast to
compute
Different values for different objects
Direct addressing with O(m) memory

Want small cardinality m
Impossible to have all different values if
number of objects |S| is more than m
(by pigeonhole principle)

Desirable Properties
Hash function should be fast to
compute
Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m

Impossible to have all different values if
number of objects |S| is more than m
(by pigeonhole principle)

Desirable Properties
Hash function should be fast to
compute
Different values for different objects
Direct addressing with O(m) memory
Want small cardinality m
Impossible to have all different values if
number of objects |S| is more than m
(by pigeonhole principle)

Collisions

Definition
When h(o1) = h(o2) and o1 ̸= o2, this is a
collision.

Desirable Properties

Hash function should be fast to
compute

Different values for different objects
Small probability of collision
Small enough cardinality m

Desirable Properties

Hash function should be fast to
compute
Different values for different objects
Small probability of collision

Small enough cardinality m

Desirable Properties

Hash function should be fast to
compute
Different values for different objects
Small probability of collision
Small enough cardinality m

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Map

Store mapping from objects to other objects:
Filename → location of the file
Phone number → name
Name → phone number

Map

Definition
Map from set S of objects to set V of
values is a data structure with methods
HasKey(object), Get(object),
Set(object, value), where
object ∈ S, value ∈ V.

Map

Definition
In a Map from S to V, objects from S are
usually called keys of the Map. Objects from
V are called values of the Map.

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1

Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717

h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book

0
1
2
3
4
5
6
7

h(01707773331) = 4

Maria01707773331

h(14052391717) = 1
Sasha14052391717 h(15025757575) = 4

Helen15025757575

Chaining for Phone Book
Select hash function h of cardinality m

Create array Chains of size m
Each element of Chains is a
doubly-linked list of pairs
(name, phoneNumber), called chain
Pair (name, phoneNumber) goes into
chain at position
h(ConvertToInt(phoneNumber)) in
the array Chains

Chaining for Phone Book
Select hash function h of cardinality m
Create array Chains of size m

Each element of Chains is a
doubly-linked list of pairs
(name, phoneNumber), called chain
Pair (name, phoneNumber) goes into
chain at position
h(ConvertToInt(phoneNumber)) in
the array Chains

Chaining for Phone Book
Select hash function h of cardinality m
Create array Chains of size m
Each element of Chains is a
doubly-linked list of pairs
(name, phoneNumber), called chain

Pair (name, phoneNumber) goes into
chain at position
h(ConvertToInt(phoneNumber)) in
the array Chains

Chaining for Phone Book
Select hash function h of cardinality m
Create array Chains of size m
Each element of Chains is a
doubly-linked list of pairs
(name, phoneNumber), called chain
Pair (name, phoneNumber) goes into
chain at position
h(ConvertToInt(phoneNumber)) in
the array Chains

Chaining for Phone Book
To look up name by phone number, go
to the chain corresponding to phone
number and look through all pairs

To add a contact, create a pair
(name, phoneNumber) and insert it into
the corresponding chain
To remove a contact, go to the
corresponding chain, find the pair
(name, phoneNumber) and remove it
from the chain

Chaining for Phone Book
To look up name by phone number, go
to the chain corresponding to phone
number and look through all pairs
To add a contact, create a pair
(name, phoneNumber) and insert it into
the corresponding chain

To remove a contact, go to the
corresponding chain, find the pair
(name, phoneNumber) and remove it
from the chain

Chaining for Phone Book
To look up name by phone number, go
to the chain corresponding to phone
number and look through all pairs
To add a contact, create a pair
(name, phoneNumber) and insert it into
the corresponding chain
To remove a contact, go to the
corresponding chain, find the pair
(name, phoneNumber) and remove it
from the chain

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation
Chains — array of chains
Each chain is a list of pairs (object, value)

HasKey(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return true

return false

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Get(object)
chain← Chains[hash(object)]
for (key, value) in chain:

if key == object:
return value

return N/A

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Implementation

Set(object, value)
chain← Chains[hash(object)]
for pair in chain:

if pair.key == object:
pair.value ← value
return

chain.Append((object, value))

Asymptotics

Lemma
Let c be the length of the longest chain in
Chains. Then the running time of HasKey,
Get, Set is Θ(c + 1).

Asymptotics

Proof
If the chain corresponding to the
object is non-empty, but the object
is not found in the chain, we will scan
all c items — Θ(c) = Θ(c + 1)

If c = 0, we still need O(1) time, thus
the need for “+1”

Asymptotics

Proof
If the chain corresponding to the
object is non-empty, but the object
is not found in the chain, we will scan
all c items — Θ(c) = Θ(c + 1)
If c = 0, we still need O(1) time, thus
the need for “+1”

Asymptotics

Lemma
Let n be the number of different objects
currently in the map and m be the cardinality
of the hash function. Then the memory
consumption for chaining is Θ(n + m).

Asymptotics

Proof
Θ(n) to store n pairs (object, value)

Θ(m) for array Chains of size m

Asymptotics

Proof
Θ(n) to store n pairs (object, value)
Θ(m) for array Chains of size m

Outline
1 Applications
2 Phone Book
3 International Phone Numbers
4 Hash Functions
5 Chaining
6 Chaining Implementation and Analysis
7 Hash Tables

Set

Definition
Set is a data structure with methods
Add(object), Remove(object),
Find(object).

Set

Examples

Students on campus

Phone numbers of contacts
Keywords in a programming language

Set

Examples

Students on campus
Phone numbers of contacts

Keywords in a programming language

Set

Examples

Students on campus
Phone numbers of contacts
Keywords in a programming language

Implementing Set

Two ways to implement a set using chaining:

Set is equivalent to map from S to
V = {true}

Store just objects instead of pairs
(object, value) in the chains

Implementing Set

Two ways to implement a set using chaining:

Set is equivalent to map from S to
V = {true}
Store just objects instead of pairs
(object, value) in the chains

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Find(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return true

return false

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Add(object)
chain← Chains[hash(object)]
for key in chain:

if key == object:
return

chain.Append(object)

Implementation

Remove(object)
if not Find(object):

return
chain← Chains[hash(object)]
chain.Erase(object)

Implementation

Remove(object)
if not Find(object):

return
chain← Chains[hash(object)]
chain.Erase(object)

Implementation

Remove(object)
if not Find(object):

return
chain← Chains[hash(object)]
chain.Erase(object)

Implementation

Remove(object)
if not Find(object):

return
chain← Chains[hash(object)]
chain.Erase(object)

Implementation

Remove(object)
if not Find(object):

return
chain← Chains[hash(object)]
chain.Erase(object)

Hash Table

Definition
An implementation of a Set or a Map using
hashing is called a hash table.

Programming Languages
Set:

unordered_set in C++
HashSet in Java
set in Python

Map:
unordered_map in C++
HashMap in Java
dict in Python

Conclusion

Chaining is a technique to implement a
hash table

Number of objects n, hash function
cardinality m, longest chain length c
Memory consumption is Θ(n + m)

Operations work in time Θ(c + 1)
How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Number of objects n, hash function
cardinality m, longest chain length c

Memory consumption is Θ(n + m)

Operations work in time Θ(c + 1)
How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Number of objects n, hash function
cardinality m, longest chain length c
Memory consumption is Θ(n + m)

Operations work in time Θ(c + 1)
How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Number of objects n, hash function
cardinality m, longest chain length c
Memory consumption is Θ(n + m)

Operations work in time Θ(c + 1)

How to make both m and c small?

Conclusion

Chaining is a technique to implement a
hash table
Number of objects n, hash function
cardinality m, longest chain length c
Memory consumption is Θ(n + m)

Operations work in time Θ(c + 1)
How to make both m and c small?

	Applications
	Phone Book
	International Phone Numbers
	Hash Functions
	Chaining
	Chaining Implementation and Analysis
	Hash Tables

